49 research outputs found

    Active Contour Model for Image Segmentation with Dilated Convolution Filter

    Get PDF
    ACMs have been demonstrated to be highly suitable as image segmentation models for computer vision tasks. Among other ACM, the local region-based models show better performance because they extract the local information regarding intensity in the neighborhood and embed it into the energy minimization function to guide the active contour to the boundary of the desired object. However, the online segmentation of noisy and inhomogeneous is still a challenging task for local region-based ACM models. To overcome this challenge, the paper proposes a novel region-based active contour model, named active contour model with local dilated convolution filter (ACLD). The ACLD integrates local image information in the form of a signed pressure force function. Then, a Gaussian kernel is applied using dilated convolution instead of discrete convolution for regularizing the level set formulation. Finally, instead of using a constant stopping condition, the ACLD automatically stops at the object boundaries. The proposed model shows improved image segmentation results visually combined with less computational time in the case of synthetic and natural images compared with the state-of-the-art models. Further, on the ISIC2017 dataset, the ACLD yields segmentation results with the highest accuracy. </p

    Comparison of Ondansetron & Dexmedetomidine for Prevention of Post Spinal Shivering

    Get PDF
    ABSTRACT: INTRODUCTION: Spinal Anaesthesia is a major component of Anaesthetist's tool set and is widely used in Anaesthesia practices. A frequent problem encountered after spinal Anaesthesia is shivering caused by hypothermia. Incidence is 10-40%, if no prophylactic measures are taken, in different studies conducted on this topic. Hypothermia during intraoperative period is caused by different causes like&nbsp; cold ambient OR temperature, cold IV fluids, unhumidified cold inspired gases, body cavity exposure, extremes of age and prolonged procedures. Shivering occurs because of vasodilation caused by inhibition of vasoconstriction by spinal Anaesthesia and altered perception from anaesthetized dermatomes. Shivering has an array of adverse effects including increased workload for cardiopulmonary system , poorly tolerated by patients at extremes of age. A number of drugs have been studied for shivering. Objective: To compare efficacy of Dexmedetomidine and ondansetron for prevention of shivering under spinal Anaesthesia Setting: AFIU&nbsp; Study design: Randomized quasi experimental study&nbsp; Study duration: 03 months&nbsp; Materials and Methods:&nbsp; The selected patients were randomly allocated to any of the two groups&nbsp; with 50 patients each, according to computer generated random numbers. Both groups recieved study drugs after spinal Anaesthesia. Ondansetron group, 0.1mg/kg (groupO) and Dexmedetomidine group 0.1mcg/kg (group D). Patients were scored for shivering at scheduled intervals and rescue doses of Pethidine were given for severe shivering not responding to study drugs. Results:&nbsp; Our study in group O had high mean shivering scores at scheduled intervals as compared to group D&nbsp; Conclusion: Dexmedetomidine provides better control of shivering than Ondansetron &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp

    Knowledge graph prediction of unknown adverse drug reactions and validation in electronic health records

    Get PDF
    Abstract Unknown adverse reactions to drugs available on the market present a significant health risk and limit accurate judgement of the cost/benefit trade-off for medications. Machine learning has the potential to predict unknown adverse reactions from current knowledge. We constructed a knowledge graph containing four types of node: drugs, protein targets, indications and adverse reactions. Using this graph, we developed a machine learning algorithm based on a simple enrichment test and first demonstrated this method performs extremely well at classifying known causes of adverse reactions (AUC 0.92). A cross validation scheme in which 10% of drug-adverse reaction edges were systematically deleted per fold showed that the method correctly predicts 68% of the deleted edges on average. Next, a subset of adverse reactions that could be reliably detected in anonymised electronic health records from South London and Maudsley NHS Foundation Trust were used to validate predictions from the model that are not currently known in public databases. High-confidence predictions were validated in electronic records significantly more frequently than random models, and outperformed standard methods (logistic regression, decision trees and support vector machines). This approach has the potential to improve patient safety by predicting adverse reactions that were not observed during randomised trials

    Hybrid SPF and KD Operator-Based Active Contour Model for Image Segmentation

    Get PDF
    Image segmentation is a crucial stage of image analysis systems because it detects and extracts regions of interest for further processing, such as image recognition and the image description. However, segmenting images is not always easy because segmentation accuracy depends significantly on image characteristics, such as color, texture, and intensity. Image inhomogeneity profoundly degrades the segmentation performance of segmentation models. This article contributes to image segmentation literature by presenting a hybrid Active Contour Model (ACM) based on a Signed Pressure Force (SPF) function parameterized with a Kernel Difference (KD) operator. An SPF function includes information from both the local and global regions, making the proposed model independent of the initial contour position. The proposed model uses an optimal KD operator parameterized with weight coefficients to capture weak and blurred boundaries of inhomogeneous objects in images. Combined global and local image statistics were computed and added to the proposed energy function to increase the proposed model's sensitivity. The segmentation time complexity of the proposed model was calculated and compared with previous state-of-the-art active contour methods. The results demonstrated the significant superiority of the proposed model over other methods. Furthermore, a quantitative analysis was performed using the mini-MIAS database. Despite the presence of complex inhomogeneity, the proposed model demonstrated the highest segmentation accuracy when compared to other methods

    ADEPt, a semantically-enriched pipeline for extracting adverse drug events from free-text electronic health records

    Get PDF
    Adverse drug events (ADEs) are unintended responses to medical treatment. They can greatly affect a patient's quality of life and present a substantial burden on healthcare. Although Electronic health records (EHRs) document a wealth of information relating to ADEs, they are frequently stored in the unstructured or semi-structured free-text narrative requiring Natural Language Processing (NLP) techniques to mine the relevant information. Here we present a rule-based ADE detection and classification pipeline built and tested on a large Psychiatric corpus comprising 264k patients using the de-identified EHRs of four UK-based psychiatric hospitals. The pipeline uses characteristics specific to Psychiatric EHRs to guide the annotation process, and distinguishes: a) the temporal value associated with the ADE mention (whether it is historical or present), b) the categorical value of the ADE (whether it is assertive, hypothetical, retrospective or a general discussion) and c) the implicit contextual value where the status of the ADE is deduced from surrounding indicators, rather than explicitly stated. We manually created the rulebase in collaboration with clinicians and pharmacists by studying ADE mentions in various types of clinical notes. We evaluated the open-source Adverse Drug Event annotation Pipeline (ADEPt) using 19 ADEs specific to antipsychotics and antidepressants medication. The ADEs chosen vary in severity, regularity and persistence. The average F-measure and accuracy achieved by our tool across all tested ADEs were 0.83 and 0.83 respectively. In addition to annotation power, the ADEPT pipeline presents an improvement to the state of the art context-discerning algorithm, ConText

    The side effect profile of Clozapine in real world data of three large mental hospitals

    Get PDF
    Objective: Mining the data contained within Electronic Health Records (EHRs) can potentially generate a greater understanding of medication effects in the real world, complementing what we know from Randomised control trials (RCTs). We Propose a text mining approach to detect adverse events and medication episodes from the clinical text to enhance our understanding of adverse effects related to Clozapine, the most effective antipsychotic drug for the management of treatment-resistant schizophrenia, but underutilised due to concerns over its side effects. Material and Methods: We used data from de-identified EHRs of three mental health trusts in the UK (>50 million documents, over 500,000 patients, 2835 of which were prescribed Clozapine). We explored the prevalence of 33 adverse effects by age, gender, ethnicity, smoking status and admission type three months before and after the patients started Clozapine treatment. We compared the prevalence of adverse effects with those reported in the Side Effects Resource (SIDER) where possible. Results: Sedation, fatigue, agitation, dizziness, hypersalivation, weight gain, tachycardia, headache, constipation and confusion were amongst the highest recorded Clozapine adverse effect in the three months following the start of treatment. Higher percentages of all adverse effects were found in the first month of Clozapine therapy. Using a significance level of (p< 0.05) out chi-square tests show a significant association between most of the ADRs in smoking status and hospital admissions and some in gender and age groups. Further, the data was combined from three trusts, and chi-square tests were applied to estimate the average effect of ADRs in each monthly interval. Conclusion: A better understanding of how the drug works in the real world can complement clinical trials and precision medicine

    Efficient Reuse of Natural Language Processing Models for Phenotype-Mention Identification in Free-text Electronic Medical Records: A Phenotype Embedding Approach.

    Get PDF
    Background: Many efforts have been put into the use of automated approaches, such as natural language processing (NLP), to mine or extract data from free-text medical records to construct comprehensive patient profiles for delivering better health-care. Reusing NLP models in new settings, however, remains cumbersome - requiring validation and/or retraining on new data iteratively to achieve convergent results. Objective: The aim of this work is to minimize the effort involved in reusing NLP models on free-text medical records. Methods: We formally define and analyse the model adaptation problem in phenotype-mention identification tasks. We identify "duplicate waste" and "imbalance waste", which collectively impede efficient model reuse. We propose a phenotype embedding based approach to minimize these sources of waste without the need for labelled data from new settings. Results: We conduct experiments on data from a large mental health registry to reuse NLP models in four phenotype-mention identification tasks. The proposed approach can choose the best model for a new task, identifying up to 76% (duplicate waste), i.e. phenotype mentions without the need for validation and model retraining, and with very good performance (93-97% accuracy). It can also provide guidance for validating and retraining the selected model for novel language patterns in new tasks, saving around 80% (imbalance waste), i.e. the effort required in "blind" model-adaptation approaches. Conclusions: Adapting pre-trained NLP models for new tasks can be more efficient and effective if the language pattern landscapes of old settings and new settings can be made explicit and comparable. Our experiments show that the phenotype-mention embedding approach is an effective way to model language patterns for phenotype-mention identification tasks and that its use can guide efficient NLP model reuse

    Trajectories of dementia-related cognitive decline in a large mental health records derived patient cohort

    Get PDF
    Background: Modeling trajectories of decline can help describe the variability in progression of cognitive impairment in dementia. Better characterisation of these trajectories has significant implications for understanding disease progression, trial design and care planning. Methods: Patients with at least three Mini-mental State Examination (MMSE) scores recorded in the South London and Maudsley NHS Foundation Trust Electronic Health Records, UK were selected (N = 3441) to form a retrospective cohort. Trajectories of cognitive decline were identified through latent class growth analysis of longitudinal MMSE scores. Demographics, Health of Nation Outcome Scales and medications were compared across trajectories identified. Results: Four of the six trajectories showed increased rate of decline with lower baseline MMSE. Two trajectories had similar initial MMSE scores but different rates of decline. In the faster declining trajectory of the two, a higher incidence of both behavioral problems and sertraline prescription were present. Conclusions: We find suggestive evidence for association of behavioral problems and sertraline prescription with rate of decline. Further work is needed to determine whether trajectories replicate in other datasets
    corecore